Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus.
نویسندگان
چکیده
In tasks involving goal-directed, stereotyped trajectories on uniform tracks, the spatially selective activity of hippocampal principal cells depends on the animal's direction of motion. Principal cell ensemble activity while the rat moves in opposite directions through a given location is typically uncorrelated. It is shown here, with data from three experiments, that multimodal, local sensory cues can change the directional properties of CA1 pyramidal cells, inducing bidirectionality in a significant proportion of place cells. For a majority of these bidirectional place cells, place field centers in the two directions of motion were displaced relative to one another, as would be the case if the cells were representing a position in space approximately 5-10 cm ahead of the rat or if place cells were subject to strong accommodation or inhibition in the latter half of their input fields. However, place field density was not affected by the presence of local cues, but in the experimental condition with the most salient sensory cues, the CA1 population vectors in the "cue-rich" condition were sparser and changed more quickly in space than in the "cue-poor" condition. These results suggest that "view-invariant" object representations are projected to the hippocampus from lower cortical areas and can have the effect of increasing the correlation of the hippocampal input vectors in the two directions, hence decreasing the orthogonality of hippocampal output.
منابع مشابه
Modelling directional firing properties of place cells
According to experimental data, hippocampal place cells are mostly directional when a rat is in radial or +-mazes, whereas most place cells are non-directional in open environments. Some studies have also reported both directional and non-directional cells in the center of plus or radial mazes [1, 2]. We hypothesize that place cells will be initially directional (responding to specific local vi...
متن کاملA feed-forward model of spatial and directional selectivity of hippocampal place cells
In recent years a wealth of studies have focused on the role of the Hippocampus in spatial learning and navigation, triggered by the finding of place sensitive cells in this area. These cells have been interpreted as being responsible for coding a representation of space [9, 10]. Even though the term place cell suggests that location is the unique determinant of firing of hippocampal cells, the...
متن کاملDerived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages
The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...
متن کاملDynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells.
A number of computational models of hippocampal place cells incorporate attractor neural network architecture to simulate key findings in the place cell literature, including the properties of pattern completion, firing in the absence of visual input, and nonlinear responses to environmental manipulations. To test for evidence of attractor dynamics, ensembles of place cells were recorded using ...
متن کاملCorrelates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task.
The observation of hippocampal place cells forms a major line of evidence supporting the view that the hippocampus is dedicated to spatial processing. However, most studies demonstrating the spatial properties of hippocampal unit activity have employed tasks that emphasize spatial cues but minimize nonspatial cues. In the present experiment we recorded the activity of hippocampal complex-spike ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 19 شماره
صفحات -
تاریخ انتشار 2004